
This material is based upon work supported by National Science Foundation.

Ron Fox, Giordano Cerizza
Sean Liddick, Aaron Chester

Modern Dataflow in Experimental Nuclear
Science (and Tcl).

▪A bit about me and my Tcl history

▪What is the National Superconducting Cyclotron Laboratory (NSCL)

▪How data taking has evolved in experimental nuclear science

▪E17011 an experiment with modern electronics – why it’s
computationally demanding

▪Parallel resources available to us

▪Message Passing Interface (MPI) and Tcl
• Intro to MPI

• Existing Tcl support

• Tcl-Ish support we did.

▪Applying MPITcl to an existing application

▪What this means for experimental nuclear science at the NSCL

Talk Outline

Ron Fox Tcl 2019, Houston, TX, Slide 2

▪ Introduced Tcl/Tk at the National Superconducting Cyclotron Lab
(NSCL) back in the 4.x days.

▪Plugged into the community with a talk in New Orleans (Tcl 2004)
• https://www.tcl.tk/community/tcl2004/Papers/RonFox/

• NSCLSpecTcl – Histogramming package for experimental nuclear science.

▪ Tcl/Tk conference proceedings editor from Tcl2005 and on if memory
serves.

▪ Tcl plays an important role in the NSCL experimental program.

Tcl and me.

Ron Fox Tcl 2019, Houston, TX, Slide 3

https://www.tcl.tk/community/tcl2004/Papers/RonFox/

The National Superconducting Cyclotron Lab.

Ron Fox Tcl 2019, Houston, TX, Slide 4

• Located at Michigan State

University

• Funded by the National Science

Foundation as a user facility

• Explore the properties of nuclear

unstable nucleii

• Why and how do certain isotopes

form.

• Where do the heavy elements come

from?

• http://www.nscl.msu.edu

NSCL Block Diagram

Ron Fox Tcl 2019, Houston, TX, Slide 5

Science drivers for Rare Isotope Research

Ron Fox Tcl 2019, Houston, TX, Slide 6

Ron Fox Tcl 2019, Houston, TX, Slide 7

Detector Preamp.
Shaping

Amp

Discrimination

Data Acquisition – old school (analog)

Logic and

timing

ADC, TDC,

QDC

Important point – dead-times for a conversion are microseconds

Data Acquisition – old school (analog)

Ron Fox Tcl 2019, Houston, TX, Slide 8

• Detector signals

• Pre-amplification

• Shaping/amplification

• Timing/triggering

• Digitizing modules

Each digitizing module

Gives one value per input:

• Pulse height

• Pulse charge integration

• Pulse timing relative to

some reference time.

Modern Data Acquisition (digital)

Ron Fox Tcl 2019, Houston, TX, Slide 9

Detector Preamp.
Flash ADC

(100-500MHz)

Large FPGA

Memory

Modern data acquisition (100MHz – 500MHz)

Ron Fox Tcl 2019, Houston, TX, Slide 10

• Detector Signals

• Preamplification

• Digitization

• Firmware can extract

• Pulse ht.

• Charge integral

• Timing

• Keeping waveforms allows

experiments that can’t be

done with analog electronics.

• Wave form analysis is

computationally demanding

Wave forms bloat the data

▪Scheduled to run in January.
• Look at beta decay of 80Ga -> 80Ge

• Look at the lifetime of the 02
+ -> 01

+

• Lifetime tell us something about the difference in the radius of the charge
distribution of the two states.

▪ 200MB/second sustained – though modest trigger rate (~3KHz).

▪Will take 100TB+ of data

▪Need good online and nearline analysis:
• Are the detectors working.

• Are we seeing what we think we should be seeing.

• Should we ask for additional (discretionary time).

E17011

E17011 – block diagram

Ron Fox Tcl 2019, Houston, TX, Slide 12Ron Fox Tcl 2019, Houston, TX, Slide 12

Sketch of experiment

86Kr primary beam

104MeV/A

9Be

Production target

80Ga

80Ga β- decays to 80Ge
Si

PIN

stack

Beam particle

ID

CeBr3

Pixilated

PMT

LaBr3

LaBr3

LaBr3

Ge

Ge

Ge

Pictures pictures (CeBr3 and LaBr3 array)

Ron Fox Tcl 2019, Houston, TX, Slide 13

More pictures Ge Array (SeGA)

Ron Fox Tcl 2019, Houston, TX, Slide 14

▪
80Ga decays to 80Ge by β- decay.
• This decay is also detected in the CeBr3 detector

• This decay populates several energy levels of 80Ge

▪ Of interest are the decays that populate the 02
+ state.

• This eventually de-excites to the 01
+ state emitting a γ-ray (detected by the LaBr3

array and/or SeGA) and and a conversion electron.

• The conversion electron produced by that decay is sensed by the CeBr3

▪ Well it’s not actually eventually.
• Similar de-excitations have half lives of about 50ns.

• We want the actual ½ life.

▪ This is a short ½ life. How to measure it.
• Digitize the pulses in the CeBr3

» Sum signal at 500MHz

» pixels at 250MHz

» Trace lengths of a few microseconds (on order 100 samples).

What happens to the implanted ions.

Ron Fox Tcl 2019, Houston, TX, Slide 15

Sample trace from a similar experiment

Ron Fox Tcl 2019, Houston, TX, Slide 16

Decay time

Conversion e- energy

▪Since most of the CeBr3 detector lights up for a hit we about
200traces/event (maximal pixel is ‘where’ the event occurred).

▪ The data rate is dominated by traces from the CeBr3.

▪ Trigger rates may be 3KHz (modest)

▪Data transfer rates will be a sustained 200MB/seconds.

▪ To see if the experiment is “working” we need to do some processing
on all this stuff.
• Determine if traces are single or double pulses.

• Determine the characteristics of the pulse(s) – time and height.

▪Good news though: Taking traces meas we can do the experiment.

Where does that 200MB/sec come from?

Ron Fox Tcl 2019, Houston, TX, Slide 17

This experiment is really hard to do

with old school electronics.

Data Flow:

Ron Fox Tcl 2019, Houston, TX, Slide 18

XIA

digitizers

Crate 1

XIA

Digitizers

Crate 2

Data emitted

Have 50Mhz

timestamps

Synchronized to

< 1ns.

Event

builder

Event

Selection

(PIN Based)

Append

Fits for 1,

2 pulses to

Sum signal.

Online

storage

100TB

130 TB

Cephs

Analysis

Storage

Periodic

rsync

Near-line analysis

Threaded

NSCLSpecTcl

(see later)

𝑦 = 𝐶 +
𝐴𝑒 ሻ−𝑘1(𝑥−𝑥0

1 + 𝑒 ሻ−𝑘2(𝑥−𝑥0

▪ Fit the sum traces from the CeBr3.
• Fit for both single and double pulses.

• Use a heuristic to determine if the pulses are single or double.

▪Make a pile of histograms (NSCLSpecTcl) and look at them online

▪Keep up with the incoming data rate.

NOTE: Each fit costs 3.5ms to do using GSL’s Levenberg-Marquardt.

Serial code isn’t going to cut it.

Online analysis

Ron Fox Tcl 2019, Houston, TX, Slide 19

▪ Fit the remaining traces in the CeBr3

• Are they single or double pulses (heuristic)?

• If double pulses extract the time difference as a parameter for
histogramming.

▪Correlate implantation events with decay events.
• Using position and particle ID information

• Timing between implantation and decay.

▪ These are computationally intensive (e.g. the fit is about 3.5ms/event).
To make decisions about the experiment we need to analyze the data
already taken faster than acquisition.

▪ Serial code isn’t going to cut it ~2500 cores just for fitting all traces.

Near-line Analysis – want to keep up with
incoming data rate or better

Ron Fox Tcl 2019, Houston, TX, Slide 20

▪ Three high core count systems:
• 1 26 core system. (Xeon E5-2690 v4 @ 2.60GHz)

• 2 40 core systems (Xeon Gold 6148 @ 2.4GHz) – bought for this experiment

• Used for online data flow and interactive ‘near-line’ analysis.

▪Modest Linux cluster
• 360 cores of various ages

• Used for non-interactive ‘near-line’ partial analysis.

▪ That’s not going to be enough (to do the fitting of all signals at data
rates needs about 2500cores).

▪ no GPU coprocessors 

Parallel resources at the NSCL available to
E17011

Ron Fox Tcl 2019, Houston, TX, Slide 21

MSU Institute for Cyber Enabled Research
(ICER)

Ron Fox Tcl 2019, Houston, TX, Slide 22

Cores

23,126

Storage

7 PB

Naturally we’ve lusted after

sought ways to leverage this

resource for near-line and maybe

even online analysis.

Work to containerize our apps is

done (thank you singularity)

Scheduling, however can be an

issue: NSCL resources can be

dedicated to E17011, ICER is

shared across all university users.

Structure of event analysis parallel programs

Ron Fox Tcl 2019, Houston, TX, Slide 23

src
Data

distribution

worker

worker

.

.

.

Sort output

Sink

▪ Different types of parallelism
• Threaded parallelism for the online/interactive stuff.

• Distributed parallelism for near-line non-interactive stuff.

▪ Tools to make parallelization simpler

▪ Fitting:
• Support for GPU ‘accelerated’ fitting residual and Jacobian computation 

• Machine learning for single/double pulse determination – most traces are single
pulses

Example trace fitting the sum signal: same program threaded/cluster

Meeting these needs.

Ron Fox Tcl 2019, Houston, TX, Slide 24

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

E
v
e
n
ts

/s
e
c

Processors

Event/sec vs processors
Fireside

HPCC scratch->scratch clump
1000

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

E
V

e
n
ts

/s
e
c

Workers

Events/sec vs workers

▪ MPI - Message Passing Interface standard for writing distributed parallel
programs.
• OpenMPI https://www.open-mpi.org/

• MPICH https://www.mpich.org/

▪ Multiple instances of the same process run in parallel.
• Each process as a rank identifying it.

• Processes can target messages to specific ranks.

• Communicators can be formed to link groups of processes together.

▪ Messages require:
• Rank – who we’re sending to but:

• Communicator – defines the process group in which the rank has meaning
(MPI_COMM_WORLD – the entire application is pre-defined).

• A Tag (integer)

• Message data.

• Type of data in the message (message data are strongly typed)

• Number of items of that type being sent.

MPI – cluster distributed parallel computing

Ron Fox Tcl 2019, Houston, TX, Slide 25

https://www.open-mpi.org/
https://www.mpich.org/

The MPI API is large and complex:

Ron Fox Tcl 2019, Houston, TX, Slide 26

… and there’s more…much more.

▪Straight encapsulation of the MPI function interface.
• Approach taken by Axel Kohlmeyer for the mpi package

• See e.g. https://core.tcl-lang.org/jenglish/gutter/packages/mpi.html

Approaches for encapsulating MPI
Subset wrapping

Ron Fox Tcl 2019, Houston, TX, Slide 27

• Still captures the flavor of the MPI API

• Still exposes explicitly the MPI API

subset

• Still exposes the complexity.

https://core.tcl-lang.org/jenglish/gutter/packages/mpi.html

▪Send scripts executed in other ranks.
• Special case of send to all or all others.

▪Send data that can be handled by other ranks via callbacks.
• Again special case of send to all or to others.

▪ Tcl – We know in advance: Everything has a string representation.

▪Binary data – may be sent around by the C/C++ part of the application
for C/C++ parts of the application to work on needs a way for that code
to shove the TclMPI event handling stuff aside and take over.

What do Tcl MPI applications want to do:

Ron Fox Tcl 2019, Houston, TX, Slide 28

▪Provides MPI aware tclsh.
• Must be run from mpirun.

▪All ranks run this.

▪Rank 0 is special – the ‘master’ interpreter it takes input from stdin
(normally a file for cluster batch jobs).

▪Provides all processes with the mpi namespace in which the mpi
command ensemble lives.

▪Rank 0 runs a thread to hoist MPI messages received to the event loop
(vwait).

▪Ranks other than zero run a main loop that accepts MPI messages
and act on them under the assumption they come from mpitcl.

▪ MPI Tags are used to transparently dispatch messages to appropriate
handlers.

mpitcl - MPI aware tcl shell.

Ron Fox Tcl 2019, Houston, TX, Slide 29

mpi::mpi command ensemble subcommands:

Ron Fox Tcl 2019, Houston, TX, Slide 30

size - How many processes are in the application.

rank – What is my rank in MPI_COMM_WORLD

execute where script – Executes a script in the rank(s) defined by where where is

a rank number “all” or “others”

send where data - sends the data to where

handle script - specifies script to handle data received. The script

receives two parameters: sender rank and the data.

stopnotifier - only legal in rank 0 – stops the event notifier thread.

startnotifier - only legal in rank 0 – starts the notifier thread again.

Sample mpitcl scripts:

Ron Fox Tcl 2019, Houston, TX, Slide 31

Mimimal MPI

script

proc receiver {rank data} {

puts "Received from $rank '$data'"

incr ::slaves -1

}

set slaves [mpi::mpi size]

incr slaves -1; # number of slave processes.

mpi::mpi handle receiver

mpi::mpi execute others {

mpi::mpi send 0 "Rank [mpi::mpi rank] is alive"

}

while {$slaves} {

vwait slaves

}

mpi::mpi stopnotifier

mpi::mpi execute all exit

Soliciting/getting data from

workers

▪NSCLSpectcl

▪Structure

▪Parallelization of the interactive version (threaded).

▪Creating a batch NSCLSpecTcl and using it with tclmpi.

Applying tclmpi – The Circle is complete.

Ron Fox Tcl 2019, Houston, TX, Slide 32

NSCLSpecTcl is highly interactive

Ron Fox Tcl 2019, Houston, TX, Slide 33

Simplified NSCLSpecTcl structure and
parallelization approaches.

Ron Fox Tcl 2019, Houston, TX, Slide 34

Extended

Tcl/Tk

Interpreter

Data Source

(File or pipe)

High level

Buffer

Decoding

User Event

Processing

pipeline

Gating and

Histogramming

Blocks of data

Raw events

Raw and synthetic parametersAnalysis

config.

Creates

Configures

And controls

Threaded Parallelism (Giordano Cerizza)

Ron Fox Tcl 2019, Houston, TX, Slide 35

Extended

Tcl/Tk

Interpreter

Data Source

(File or pipe)

Gating and

Histogramming

Blocks of data

High level

Buffer

Decoding

User Event

Processing

pipeline

Raw events

Decoded and synthetic parametersAnalysis

config.

Creates

Configures

And starts High level

Buffer

Decoding

User Event

Processing

pipeline

…

User code must be thread-safe

Threaded Spectcl performance

Ron Fox Tcl 2019, Houston, TX, Slide 36

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50

P
ro

c
e
s
s
in

g
 S

p
e
e
d
 (

M
b
/s

)

Number of Processors

• Roll off is at the

performance limit of the

SSD that contained the

data.

• Analysis pipeline for this

case is simple compared

with E17011’s.

• Good scaling up until SSD

transfer limits.

▪We can recruit more cores if the application scales.

▪We don’t have to worry about thread safety since it’s process
parallelism.

▪With an assist from container technology (e.g. singularity) we can get
outside the NSCL to supercomputer centers (or ICER e.g.) with even
more cores.

▪BUT In almost all cases cluster computing doesn’t allow dynamic
interactivity.
• Needed to turn NSCLSpecTcl into a batch program.

• Needed to figure out how to easily parallelize it.

• This is the original target of mpitcl.

MPI parallelism?

Ron Fox Tcl 2019, Houston, TX, Slide 37

▪ Each process is a complete batch NSCLSpecTcl
• Batch NSCLSpecTcl is three packages
» spectcl – the base application code.

» mpispectcl MPI data sources and sinks.

» A user supplied package implementing the processing pipeline.

• Batch/MPI NSCLSpecTcl has generalized data sources and sinks. analyze command sends
blocks of events from source to sink. I’ve implemented:
» Source –file.

» Source – MPI (for workers – requests block of data from rank 0).

» Sink -- Analysis

» Sink – MPI (Distributes blocks of data to workers using MPI source).

▪ Rank 0 :
• Tells each process (including itself) to read in the configuration scripts.

• Tells other process to use an MPI Source and Analysis sink

• Tells itself to use a file data source and MPI sink.

• Tells everyone to start analyzing data.

▪ When analysis is complete Rank 0
• Tells all other processes to send it spectrum data.

• Sums the spectra into total spectra

• Writes them out for visualization.

MPI NSCLSpecTcl

Ron Fox Tcl 2019, Houston, TX, Slide 38

What this looks like:

Ron Fox Tcl 2019, Houston, TX, Slide 39

mpi::mpi execute all {

package require spectcl

package require mpispectcl

package require MyPipeline; # User event processing code is here.

source defs.tcl

}

mpi::mpi execute others {

mpisource

analysissink

}

filesource run-0003-00.evt

mpisink

mpi::mpi stopnotifier

mpi::mpi execute others analyze

analyze

mpi::mpi startnotifier

Getting the data back:

Ron Fox Tcl 2019, Houston, TX, Slide 40

set l [spectrum -list]

set f [open spectra.dat w]

foreach spectrum $l {

set name [lindex $spectrum 1]

getSpectrumFromWorkers $name

swrite -format ascii $f $name; # Writes a histo to file.

}

close $f

Summing a spectrum from worker nodes.

Ron Fox Tcl 2019, Houston, TX, Slide 41

proc addData {name src data} {; # sums the histo from 1 worker into the local histo.

foreach datum $data {

set value [lindex $datum end]

set coords [lrange $datum 0 end-1]

set current [channel -get $name $coords]

incr current $value

channel -set $name $coords $current

}

incr ::expected -1

}

proc getSpectrumFromWorkers name {

mpi::mpi handle [list addData $name]

set ::expected [mpi::mpi size]

incr ::expected -1;

set script "mpi::mpi send 0; # Care must be taken to ensure substitutions are done

append script "\[“ ; # in the right process.

append script "scontents $name]"

mpi::mpi execute others $script

while {$::expected > 0} {

vwait ::expected;

}

}

Does this work?

Ron Fox Tcl 2019, Houston, TX, Slide 42

10Gbyte file with 2,754,450 events.

Workers Time MB/sec Events/sec

1 25.4 403.1496 108442.91

2 13.5 758.5185 204033.33

4 6.6 1551.515 417340.91

8 3.9 2625.641 706269.23

0

100000

200000

300000

400000

500000

600000

700000

800000

0 1 2 3 4 5 6 7 8 9

E
v
e
n
ts

/s
e
c

workers

Events/sec

• 2.6Gbytes/sec is interconnect saturation (dual 10GBit/sec ethernet)

• Event processing in the actual experiment

will be more complex but we can scale to more workers.

▪ NSCL’s Transition to modern, digital nuclear electronics poses problems for
online and near-line data analysis.

▪ Experiments will increasingly require parallelism in online and near-line data
handling:
• Software tools to make it easy for naïve users to make use of parallelism by plugging

in their event analysis code.

• Large core count systems for interactive, online analysis (threaded parallel).

• Clusters dedicated to the running experiment for near-line analysis (distributed
parallel).

• High speed interconnects to support the data flow bandwidth.

• Large, multi-petabyte storage that’s fast with fast interconnects.

▪ E17011 provides a laboratory to explore the techniques we’ll need to apply to
modern experiments.

▪ mpitcl is one technique to simplify parallel programming for “the masses”
• Easly retrofitted a highly interactive, complex serial analysis program (2 days work)

• Got scaling up to the interconnect bandwidth.

Conclusions

Ron Fox Tcl 2019, Houston, TX, Slide 43

