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▪A bit about me and my Tcl history

▪What is the National Superconducting Cyclotron Laboratory (NSCL)

▪How data taking has evolved in experimental nuclear science 

▪E17011 an experiment with modern electronics – why it’s 
computationally demanding

▪Parallel resources available to us

▪Message Passing Interface (MPI) and Tcl
• Intro to MPI

• Existing Tcl support

• Tcl-Ish support we did.

▪Applying MPITcl to an existing application

▪What this means for experimental nuclear science at the NSCL

Talk Outline
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▪ Introduced Tcl/Tk at the National Superconducting Cyclotron Lab 
(NSCL) back in the 4.x days.

▪Plugged into the community with a talk in New Orleans (Tcl 2004)
• https://www.tcl.tk/community/tcl2004/Papers/RonFox/

• NSCLSpecTcl – Histogramming package for experimental nuclear science.

▪ Tcl/Tk conference proceedings editor from Tcl2005 and on if memory 
serves.

▪ Tcl plays an important role in the NSCL experimental program.

Tcl and me.
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https://www.tcl.tk/community/tcl2004/Papers/RonFox/


The National Superconducting Cyclotron Lab.
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• Located at Michigan State 

University

• Funded by the National Science 

Foundation as a user facility

• Explore the properties of nuclear

unstable nucleii

• Why and how do certain isotopes 

form.

• Where do the heavy elements come 

from?

• http://www.nscl.msu.edu



NSCL Block Diagram
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Science drivers for Rare Isotope Research
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Data Acquisition – old school (analog)
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• Detector signals

• Pre-amplification

• Shaping/amplification

• Timing/triggering

• Digitizing modules 

Each digitizing module 

Gives one value per input:

• Pulse height

• Pulse charge integration

• Pulse timing relative to 

some reference time.



Modern Data Acquisition (digital)
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Modern data acquisition (100MHz – 500MHz)
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• Detector Signals

• Preamplification

• Digitization

• Firmware can extract 

• Pulse ht.

• Charge integral

• Timing 

• Keeping waveforms allows 

experiments that can’t be

done with analog electronics.

• Wave form analysis is 

computationally demanding

Wave forms bloat the data



▪Scheduled to run in January.
• Look at beta decay of 80Ga -> 80Ge

• Look at the lifetime of the 02
+ -> 01

+

• Lifetime tell us something about the difference in the radius of the charge 
distribution of the two states.

▪ 200MB/second sustained – though modest trigger rate (~3KHz).

▪Will take 100TB+ of data

▪Need good online and nearline analysis:
• Are the detectors working.

• Are we seeing what we think we should be seeing.

• Should we ask for additional (discretionary time).

E17011



E17011 – block diagram
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Pictures pictures (CeBr3 and LaBr3 array)
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More pictures Ge Array (SeGA)
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▪
80Ga decays to 80Ge by β- decay.
• This decay is also detected in the CeBr3 detector

• This decay populates several energy levels of 80Ge

▪ Of interest are the decays that populate the 02
+ state. 

• This eventually de-excites to the 01
+ state emitting a γ-ray (detected by the LaBr3

array and/or SeGA) and and a conversion electron.

• The conversion electron produced by that decay is sensed  by the CeBr3

▪ Well it’s not actually eventually.
• Similar de-excitations have half lives of about 50ns.

• We want the actual ½ life.

▪ This is a short ½ life.  How to measure it.
• Digitize the pulses in the CeBr3

» Sum signal at 500MHz

» pixels at 250MHz

» Trace lengths of a few microseconds (on order 100 samples).

What happens to the implanted ions.
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Sample trace from a similar experiment
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Decay time

Conversion e- energy



▪Since most of the CeBr3 detector lights up for a hit we about 
200traces/event (maximal pixel is ‘where’ the event occurred).

▪ The data rate is dominated by traces from the CeBr3.

▪ Trigger rates may be 3KHz (modest)

▪Data transfer rates will be a sustained 200MB/seconds.

▪ To see if the experiment is “working” we need to do some processing 
on all this stuff.
• Determine if traces are single or double pulses.

• Determine the characteristics of the pulse(s) – time and height.

▪Good news though: Taking traces meas we can do the experiment.

Where does that 200MB/sec come from?
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This experiment is really hard to do 

with old school electronics.



Data Flow:
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𝐴𝑒 ሻ−𝑘1(𝑥−𝑥0
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▪ Fit the sum traces from the CeBr3.
• Fit for both single and double pulses.

• Use a heuristic to determine if the pulses are single or double.

▪Make a pile of histograms (NSCLSpecTcl) and look at them online

▪Keep up with the incoming data rate.

NOTE:  Each fit costs 3.5ms to do using GSL’s Levenberg-Marquardt.

Serial code isn’t going to cut it.

Online analysis
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▪ Fit the remaining traces in the CeBr3

• Are they single or double pulses (heuristic)?

• If double pulses extract the time difference as a parameter for 
histogramming.

▪Correlate implantation events with decay events.
• Using position and particle ID information

• Timing between implantation and decay.

▪ These are computationally intensive (e.g. the fit is about 3.5ms/event). 
To make decisions about the experiment we need to analyze the data 
already taken faster than acquisition.

▪ Serial code isn’t going to cut it ~2500 cores just for fitting all traces.

Near-line Analysis – want to keep up with 
incoming data rate or better
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▪ Three high core count systems:
• 1 26 core system.  (Xeon E5-2690 v4 @ 2.60GHz)

• 2 40 core systems (Xeon Gold 6148 @ 2.4GHz) – bought for this experiment

• Used for online data flow and interactive ‘near-line’ analysis.

▪Modest Linux cluster
• 360 cores of various ages 

• Used for non-interactive ‘near-line’ partial analysis.

▪ That’s not going to be enough (to do the fitting of all signals at data 
rates needs about 2500cores).

▪ no GPU coprocessors 

Parallel resources at the NSCL available to 
E17011
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MSU Institute for Cyber Enabled Research 
(ICER)
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Cores

23,126

Storage

7 PB

Naturally we’ve lusted after

sought ways to leverage this

resource for near-line and maybe

even online analysis.

Work to containerize our apps is

done (thank you singularity)

Scheduling, however can be an

issue:  NSCL resources can be 

dedicated to E17011, ICER is 

shared across all university users.



Structure of event analysis parallel programs
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▪ Different types of parallelism
• Threaded parallelism for the online/interactive stuff.

• Distributed parallelism for near-line non-interactive stuff.

▪ Tools to make parallelization simpler

▪ Fitting:
• Support for GPU ‘accelerated’ fitting residual and Jacobian computation 

• Machine learning for single/double pulse determination – most traces are single 
pulses 

Example trace fitting the sum signal: same program threaded/cluster

Meeting these needs.
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▪ MPI  - Message Passing Interface standard for writing distributed parallel 
programs.
• OpenMPI https://www.open-mpi.org/

• MPICH https://www.mpich.org/

▪ Multiple instances of the same process run in parallel.
• Each process as a rank identifying it.

• Processes can target messages to specific ranks.

• Communicators can be formed to link groups of processes together.

▪ Messages require:
• Rank – who we’re sending to but:

• Communicator – defines the process group in which the rank has meaning 
(MPI_COMM_WORLD – the entire application is pre-defined).

• A Tag (integer)

• Message data.

• Type of data in the message (message data are strongly typed)

• Number of items of that type being sent.

MPI – cluster distributed parallel computing
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https://www.open-mpi.org/
https://www.mpich.org/


The MPI API is large and complex:
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… and there’s more…much more.



▪Straight encapsulation of the MPI function interface.
• Approach taken by Axel Kohlmeyer for the mpi package

• See e.g. https://core.tcl-lang.org/jenglish/gutter/packages/mpi.html

Approaches for encapsulating MPI
Subset wrapping
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• Still captures the flavor of the MPI API

• Still exposes explicitly the MPI API 

subset

• Still exposes the complexity.

https://core.tcl-lang.org/jenglish/gutter/packages/mpi.html


▪Send scripts executed in other ranks.
• Special case of send to all or all others.

▪Send data that can be handled by other ranks via callbacks.
• Again special case of send to all or to others.

▪ Tcl – We know in advance: Everything has a string representation.

▪Binary data – may be sent around by the C/C++ part of the application 
for C/C++ parts of the application to work on needs a way for that code 
to shove the TclMPI event handling stuff aside and take over.

What do Tcl MPI applications want to do:
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▪Provides MPI aware tclsh.
• Must be run from mpirun.

▪All ranks run this.

▪Rank 0 is special – the ‘master’ interpreter it takes input from stdin
(normally a file for cluster batch jobs).

▪Provides all processes with the mpi namespace in which the mpi
command ensemble lives.

▪Rank 0 runs a thread to hoist MPI messages received to the event loop 
(vwait).

▪Ranks other than zero run a main loop that accepts MPI messages 
and act on them under the assumption they come from mpitcl.

▪ MPI Tags are used to transparently dispatch messages to appropriate 
handlers.

mpitcl - MPI aware tcl shell.
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mpi::mpi command ensemble subcommands:

Ron Fox Tcl 2019, Houston, TX, Slide 30

size                            - How many processes are in the application.

rank                           – What is my rank in MPI_COMM_WORLD

execute where script – Executes a script in the rank(s) defined by where where is

a rank number “all” or “others”

send where data - sends the data to where

handle script             - specifies script to handle data received.  The script     

receives two parameters: sender rank and the data.

stopnotifier - only legal in rank 0 – stops the event notifier thread.

startnotifier - only legal in rank 0 – starts the notifier thread again.



Sample mpitcl scripts:
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Mimimal MPI 

script

proc receiver {rank data} {

puts "Received from $rank '$data'"

incr ::slaves -1

}

set slaves [mpi::mpi size]

incr slaves -1;           # number of slave processes.

mpi::mpi handle receiver

mpi::mpi execute others {

mpi::mpi send 0 "Rank [mpi::mpi rank] is alive"

}

while {$slaves} {

vwait slaves

}

mpi::mpi stopnotifier

mpi::mpi execute all exit

Soliciting/getting data from 

workers



▪NSCLSpectcl

▪Structure

▪Parallelization of the interactive version (threaded).

▪Creating a batch NSCLSpecTcl and using it with tclmpi.

Applying tclmpi – The Circle is complete.
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NSCLSpecTcl is highly interactive
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Simplified NSCLSpecTcl structure and 
parallelization approaches.
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Threaded Parallelism (Giordano Cerizza)
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Threaded Spectcl performance
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• Roll off is at the 

performance limit of the 

SSD that contained the 

data.

• Analysis pipeline for this 

case is simple compared 

with E17011’s.

• Good scaling up until SSD 

transfer limits.



▪We can recruit more cores if the application scales.

▪We don’t have to worry about thread safety since it’s process 
parallelism.

▪With an assist from container technology (e.g. singularity) we can get 
outside the NSCL to supercomputer centers (or ICER e.g.) with even 
more cores.

▪BUT In almost all cases cluster computing doesn’t allow dynamic 
interactivity.
• Needed to turn NSCLSpecTcl into a batch program.

• Needed to figure out how to easily parallelize it.

• This is the original target of mpitcl.

MPI parallelism?
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▪ Each process is a complete batch NSCLSpecTcl
• Batch NSCLSpecTcl is three packages
» spectcl – the base application code.

» mpispectcl MPI data sources and sinks.

» A user supplied package implementing the processing pipeline.

• Batch/MPI NSCLSpecTcl has generalized data sources and sinks. analyze command sends 
blocks of events from source to sink. I’ve implemented:
» Source –file.

» Source – MPI (for workers – requests block of data from rank 0).

» Sink  -- Analysis

» Sink – MPI (Distributes blocks of data to workers using MPI source).

▪ Rank 0 :
• Tells each process (including itself) to read in the configuration scripts.

• Tells other process to use an MPI Source and Analysis sink

• Tells itself to use a file data source and MPI sink.

• Tells everyone to start analyzing data.

▪ When analysis is complete Rank 0
• Tells all other processes to send it spectrum data.

• Sums the spectra into total spectra

• Writes them out for visualization.

MPI NSCLSpecTcl
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What this looks like:
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mpi::mpi execute all {

package require spectcl

package require mpispectcl

package require MyPipeline;   # User event processing code is here.

source defs.tcl

}

mpi::mpi execute others {

mpisource

analysissink

}

filesource run-0003-00.evt

mpisink

mpi::mpi stopnotifier

mpi::mpi execute others analyze

analyze

mpi::mpi startnotifier



Getting the data back:

Ron Fox Tcl 2019, Houston, TX, Slide 40

set l [spectrum -list]

set f [open spectra.dat w]

foreach spectrum $l {

set name [lindex $spectrum 1]

getSpectrumFromWorkers $name

swrite -format ascii $f $name;   # Writes a histo to file.

}

close $f



Summing a spectrum from worker nodes.
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proc addData {name src data} {;         # sums the histo from 1 worker into the local histo.

foreach datum $data {

set value [lindex $datum end]

set coords [lrange $datum 0 end-1]

set current [channel -get $name $coords]

incr current $value

channel -set $name $coords $current

}

incr ::expected -1

}

proc getSpectrumFromWorkers name {

mpi::mpi handle [list addData $name]

set ::expected [mpi::mpi size]

incr ::expected -1;

set script "mpi::mpi send 0;   # Care must be taken to ensure substitutions are done

append script "\[“         ;   # in the right process.

append script "scontents $name]"

mpi::mpi execute others $script

while {$::expected > 0} {

vwait ::expected; 

}

}



Does this work?
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10Gbyte file with 2,754,450 events.

Workers Time MB/sec Events/sec

1 25.4 403.1496 108442.91

2 13.5 758.5185 204033.33
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• 2.6Gbytes/sec is interconnect saturation (dual 10GBit/sec ethernet)

• Event processing in the actual experiment

will be more complex but we can scale to more workers.



▪ NSCL’s Transition to modern, digital nuclear electronics poses problems for 
online and near-line data analysis.

▪ Experiments will increasingly require parallelism in online and near-line data 
handling:
• Software tools to make it easy for naïve users to make use of parallelism by plugging 

in their event analysis code.

• Large core count systems for interactive,  online analysis (threaded parallel).

• Clusters dedicated to the running experiment for near-line analysis (distributed 
parallel).

• High speed interconnects to support the data flow bandwidth.

• Large, multi-petabyte storage that’s fast with fast interconnects.

▪ E17011 provides a laboratory to explore the techniques we’ll need to apply to 
modern experiments.

▪ mpitcl is one technique to simplify parallel programming for “the masses”
• Easly retrofitted a highly interactive, complex serial analysis program (2 days work)

• Got scaling up to the interconnect bandwidth.

Conclusions
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