Modern Dataflow in Experimental Nuclear
Science (and Tcl).

Ron Fox, Giordano Cerizza
Sean Liddick, Aaron Chester

This material is based upon work supported by National Science Foundation.

Talk Outline

= A bit about me and my Tcl history
= What is the National Superconducting Cyclotron Laboratory (NSCL)
» How data taking has evolved in experimental nuclear science

* E17011 an experiment with modern electronics — why it's
computationally demanding

= Parallel resources available to us

» Message Passing Interface (MPI) and Tcl
* Intro to MPI
« Existing Tcl support
* Tcl-Ish support we did.

= Applying MPITcl to an existing application
» What this means for experimental nuclear science at the NSCL

. Ron Fox Tcl 2019, Houston, TX, Slide 2

Tcl and me.

* Introduced Tcl/Tk at the National Superconducting Cyclotron Lab
(NSCL) back in the 4.x days.

* Plugged into the community with a talk in New Orleans (Tcl 2004)
e https://www.tcl.tk/community/tcl2004/Papers/RonFox/
 NSCLSpecTcl — Histogramming package for experimental nuclear science.

» Tcl/Tk conference proceedings editor from Tcl2005 and on if memory
serves.

» Tcl plays an important role in the NSCL experimental program.

. Ron Fox Tcl 2019, Houston, TX, Slide 3

https://www.tcl.tk/community/tcl2004/Papers/RonFox/

The National Superconducting Cyclotron Lab.

|
J
COLLEGE
. CFLaw ’J

3 > USHAWLANE » 4

BOGUEST.

NATIONAL SUPERCONDUCTING
CYCLOTRON LABORATORY

s PARK Al
\ J -
-
| 4
= - 1 WHARTON
1. \ ‘ . | CENTER
BIOCHEMISTRY | | TR | o
B g FUTURE FRIB CONSTRUCTION [
/ ' |
- foe—! 1 |
........... - 4
© WILSON ROAD :

» Located at Michigan State
University

* Funded by the National Science
Foundation as a user facility

120+

NUCLEAR LANDSCAPE
M Stable nuclei
100 Observe d nuclei :
Terra Incognita : el

PROTON NUMBER

1 1 1 1 ! 1
40 60 80 100 120 140 160 180
NEUTRON NUMBER

« Explore the properties of nuclear
unstable nucleii

* Why and how do certain isotopes
form.

 Where do the heavy elements come
from?
* http://www.nscl.msu.edu

Ron Fox Tcl 2019, Houston, TX, Slide 4

NSCL Block Diagram

K500 Cyclotron

A1900 Fragment
Separator

507

RARE ISOTOPE SCIENCE
ALONG THE BEAMLINE

Ron Fox Tcl 2019, Houston, TX, Slide 5

Science drivers for Rare Isotope Research

Science drivers (thrusts) from NRC RISAC 2007

Nuclear Structure Nuclear Astrophysics Fundan'ia-ll-'lagtlssoyfmmh'ies Applications of Isotopes
Intellectual challenges from NRC Decadal Study 2013
How does subatomic How did visible matter Are fundamental interac- How can the knowledge

matter organize itself and
what phenomena
emerge?

come into being and how
does it evolve?

tions that are basic to the
structure of matter fully
understood?

and technological
progress provided by
nuclear physics best be
used to benefit society?

Overarching questions from NSAC Long Range Plan 2015

How are nuclei made and
organized?

What is the nature of
dense nuclear matter?

Where do nuclei and
elements come from?

What combinations of
neutrons and protons can
form a bound atomic
nucleus?

How do neutrinos affect
element synthesis?

Are neutrinos their own
antiparticles?

Why is there more matter
than antimatter in the
present universe?

What are practical and
scientific uses of nuclei?

Overarching questions are answered by rare isotope research

Ron Fox Tcl 2019, Houston, TX, Slide 6

Data Acquisition — old school (analog)

Detector

Preamp.

Shaping

| ADC, TDC,

Amp

.

QDC

1

Discrimination

Logic and
timing

Important point — dead-times for a conversion are microseconds

Ron Fox Tcl 2019, Houston, TX, Slide 7

Data Acquisition — old school (analog)

» Detector signals

* Pre-amplification

» Shaping/amplification
« Timing/triggering

« Digitizing modules

Each digitizing module

Gives one value per input:

» Pulse height

* Pulse charge integration

» Pulse timing relative to
some reference time.

Ron Fox Tcl 2019, Houston, TX, Slide 8

Modern Data Acquisition (digital)

Detector

* Preamp.

Flash ADC

" (100-500MHz)

\

!

Memory

Large FPGA

/

Ron Fox Tcl 2019, Houston, TX, Slide 9

Modern data acquisition (100MHz — 500MHz)

» Detector Signals
* Preamplification

 Digitization

* Firmware can extract
* Pulse ht.
« Charge integral
* Timing

« Keeping waveforms allows
experiments that can’t be
done with analog electronics.

« Wave form analysis is
computationally demanding
Wave forms bloat the data

Ron Fox Tcl 2019, Houston, TX, Slide 10

E17011

= Scheduled to run in January.
» Look at beta decay of 80Ga -> 80Ge
* Look at the lifetime of the 0,* ->0,*

» Lifetime tell us something about the difference in the radius of the charge
distribution of the two states.

= 200MB/second sustained — though modest trigger rate (~3KHz).
= \Will take 100TB+ of data

* Need good online and nearline analysis:
* Are the detectors working.
 Are we seeing what we think we should be seeing.
» Should we ask for additional (discretionary time).

E17011 — block diagram

Existing Silicon PIN detectors, Pin
Detector Mount, Vacuum Flange, and With.2 rich extansions far

Existing 18 inch Beam
it Line Extension
© -Way Cross ' S positioning of LaBr, array
: 2 T £ with position-sensitive
| N AQOAY

Existing “Beta SeGA” Frame

8 scintillator

- —
]

Sketch of experiment

Ge

LaBr,

Existing XYZ SeGA
stand base

Ge

86Kr primary beam 80Ga
A" CeBr,
Si

104MeV/A 80Ga [3- decays to 80Ge
PIN Pixilated LaBr,
stack PMT

9Be Ge

Production target FI)Deam particle

v
v

LaBr,

Ron Fox Tcl 2019, Houston, TX, Slide 12

Pictures pictures (CeBr,; and LaBr, array)

|

''''''''

Ron Fox Tcl 2019, Houston, TX, Slide 13

)
<
O
<5
)
N
>
&
<
<5
O
V)
0
=
O
o
2
o
=

Ron Fox Tcl 2019, Houston, TX, Slide 14

What happens to the implanted ions.

= 80Ga decays to 8°Ge by [3- decay.
« This decay is also detected in the CeBr, detector
 This decay populates several energy levels of 89Ge

= Of interest are the decays that populate the 0,* state.

 This eventually de-excites to the 0,* state emitting a y-ray (detected by the LaBr,
array and/or SeGA) and and a conversion electron.

« The conversion electron produced by that decay is sensed by the CeBr,

= Well it's not actually eventually.
e Similar de-excitations have half lives of about 50ns.
 We want the actual v~ life.

* This is a short ¥z life. How to measure it.
» Digitize the pulses in the CeBry
» Sum signal at 500MHz
» pixels at 250MHz
» Trace lengths of a few microseconds (on order 100 samples).

Ron Fox Tcl 2019, Houston, TX, Slide 15

Sample trace from a similar experiment

I 1400 ~

%) B

- -

< — Beta decay Internal Conversion

8 1300 |— electron

) B -

< B Decay time !

py 1200 —

_g — Conversion e- energy

+ B

o 1100

& N

<L |

© -

m L | | | ‘ | | | | | | | | | ‘ | | | | | | | | | |

300 400 500 600 700 800
Time(ns)

Ron Fox Tcl 2019, Houston, TX, Slide 16

Where does that 200MB/sec come from?

» Since most of the CeBr3 detector lights up for a hit we about
200traces/event (maximal pixel is ‘where’ the event occurred).

* The data rate is dominated by traces from the CeBr3.
* Trigger rates may be 3KHz (modest)
» Data transfer rates will be a sustained 200MB/seconds.

» To see if the experiment is “working” we need to do some processing
on all this stuff.
* Determine if traces are single or double pulses.
* Determine the characteristics of the pulse(s) — time and height.

* Good news though: Taking traces meas we can do the experiment.

This experiment is really hard to do
with old school electronics.

. Ron Fox Tcl 2019, Houston, TX, Slide 17

XIA
digitizers |
Crate 1

XIA
Digitizers |
Crate 2

Data emitted
Have 50Mhz
timestamps
Synchronized to
<1ns.

Data Flow:

Ae—kl(x—xo)
y=C+ 1 4+ e—k2(x—x0) Online
. storage
Appen
Event . Fits for 1,
. i - ' Selection ~ !
builder (PIN Based) 2 pulses to
Sum signal.
Periodic
rsync
Threaded 130TB
NSCLSpecTcl Caphs
(see later) Analysis
Storage

Near-line analysis

Ron Fox Tcl 2019, Houston, TX, Slide 18

Online analysis

= Fit the sum traces from the CeBr3.
« Fit for both single and double pulses.
« Use a heuristic to determine if the pulses are single or double.

» Make a pile of histograms (NSCLSpecTcl) and look at them online
= Keep up with the incoming data rate.

NOTE: Each fit costs 3.5ms to do using GSL's Levenberg-Marquardt.

Serial code isn’t going to cut it.

. Ron Fox Tcl 2019, Houston, TX, Slide 19

Near-line Analysis —want to keep up with
Incoming data rate or better

= Fit the remaining traces in the CeBr,
* Are they single or double pulses (heuristic)?

* If double pulses extract the time difference as a parameter for
histogramming.

= Correlate implantation events with decay events.
 Using position and particle ID information
« Timing between implantation and decay.

* These are computationally intensive (e.g. the fit is about 3.5ms/event).
To make decisions about the experiment we need to analyze the data
already taken faster than acquisition.

= Serial code isn’t going to cut it ~2500 cores just for fitting all traces.

. Ron Fox Tcl 2019, Houston, TX, Slide 20

Parallel resources at the NSCL available to
E17011

* Three high core count systems:
« 1 26 core system. (Xeon E5-2690 v4 @ 2.60GHz)
« 2 40 core systems (Xeon Gold 6148 @ 2.4GHz) — bought for this experiment
» Used for online data flow and interactive ‘near-line’ analysis.

* Modest Linux cluster
360 cores of various ages
« Used for non-interactive ‘near-line’ partial analysis.

* That's not going to be enough (to do the fitting of all signals at data
rates needs about 2500cores).

= no GPU coprocessors ®

Ron Fox Tcl 2019, Houston, TX, Slide 21

MSU Institute for Cyber Enabled Research
(ICER)

Naturally we've lusted-after
sought ways to leverage this
resource for near-line and maybe
even online analysis.

Cores
23,126

Work to containerize our apps is
done (thank you singularity)

Storage Theoretical | Scheduling, however can be an
peak performance .
- PB erop) | issue: NSCL resources can be
dedicated to E17011, ICER is

175

shared across all university users.

Ron Fox Tcl 2019, Houston, TX, Slide 22

Structure of event analysis parallel programs

worker

Data
distribution

worker

Ron Fox Tcl 2019, Houston, TX, Slide 23

Meeting these needs.

= Different types of parallelism
» Threaded parallelism for the online/interactive stuff.

« Distributed parallelism for near-line non-interactive stuff.
» Tools to make parallelization simpler

= Fitting:
» Support for GPU ‘accelerated’ fitting residual and Jacobian computation ®

» Machine learning for single/double pulse determination — most traces are single

pulses
Example trace fitting the sum signal: same program threaded/cluster
—0— Fireside
Event/sec vs processors
Events/sec VS Workers 230000 —O—I;go%c scratch->scratch clump
14000 25000
12000 e 20000
9 10000 %
ﬁ 8000 % 15000
T 6000 T 10000
>
w4000 5000
2000
0 0
0 20 40 60 80 100 0 50 100 Proc:leSgsorS 200 250 300

Workers

Ron Fox Tcl 2019, Houston, TX, Slide 24

MPI — cluster distributed parallel computing

* MPI - Message Passing Interface standard for writing distributed parallel
programs.
* OpenMPI hitps://www.open-mpi.org/
* MPICH https://www.mpich.org/

= Multiple instances of the same process run in parallel.
« Each process as a rank identifying it.
» Processes can target messages to specific ranks.
« Communicators can be formed to link groups of processes together.

» Messages require:
* Rank — who we’re sending to but:

« Communicator — defines the process group in which the rank has meaning
(MPI_COMM_WORLD - the entire application is pre-defined).

» A Tag (integer)

» Message data.

» Type of data in the message (message data are strongly typed)
* Number of items of that type being sent.

Ron Fox Tcl 2019, Houston, TX, Slide 25

https://www.open-mpi.org/
https://www.mpich.org/

The MPI APl is large and complex:

MPI MPIL File call errhandler MPI Ineighbor allgather MPI T init thread MPL Bcask MPL erthandler MPT_Neighbor allfoall
MPIX Allgather init MPI File close MPI Ineighbor allgathery MPI T pvar get info MPI Bsend w MDM
MPIX_Allgatherv init MPI File create errhandler MPI Ineighbor alltoall MPI T pvar get num MET_Bsend init w MPI_Neighbor alitoallw
MPIX Allreduce ini MPI File delste MPI Ineighbor alltoally MPI T pvar handle alloc MP| Buffer attach w MPL Op cof .
MPIX Alltcall MPL File f2c MPI Ineighbor alltoallw MPI T pvar handle free MP| Buffer detach MYE MPL_Op commutative
MPIX_Alltoally init MPT File get amode MPI Info c2f MP1 T pvar read MPI Cancel MPL File MPL Op create
MPTX Alltoal MPI _File get atomicity MPI Info create MPI T pvar readraset MPL Cart coords MPL File all MPL Op f2c
MPIX Barrier init MPL File get byte offset MPI Info delete MPI T pvar reset MP] cart create MPL File 2ll begin MPL Op free
MPIX Becast init MPI_File get errhandler MPI Info dup MPI T pvar session create MPI Cart get MPI File sl end MPI Open port
MPIX Exscan init MPI_File get group MPI Info env MPI T pvar session free MPI Cart map MPIL File at MPIL Pack
MPIX Gather init MPI File_get info MBI Info fac MPI T pvar start MPI_Cart rank MPT_File at all MPI Pack external
MPIX Gatherv_init MPI File_get | MBI Info free MPI T pvar stop MPI Cart shift MPL File at all begin MPI Pack external size
MPIX Meighbor allgather init MPI File get | MPI Info get MP1 T pvar write MPI Cart sub MPL File st all end MPI Pack size
MPIX Neighbor allgathery init MPI File get size MPI Info get nkeys MPI Test MPI Cartdim _get MPL File ordered MPI Pcontrol
MPIX Neighbor alltoall init MPI File get type extent MPI Info get nthkey MPI Test cancelled MPI Close port MPI File ordered begin MPI_Probe
MPIX Neighbor alltoally init MPI File MPI Info get valuelen MP1 Testall MPI Comm accept MPIL File ordered end MPI_Publish_name
MPIX_Neighbor_alltoallw MPL File i MPI Info set MPI Testany, MPI Comm c2f MPL File shared MP] Put
MPIX_Query cuda support MPIL Flle MPI_nit MPI_Testsome MPI Comm call errhandler MPI Finalize MPIL Query thread
MPIX Reduce init HMPL File MPI Init thread MPI Topo_test MPI_Comm_compare MPI Finalized MPI Raccumulate
MPLX_Reduce scatter block init MPI File iread at all MPI_Initialized MPIL_Type c2f MPI Comm connect MPI Free mem MPI Recv
MPIX_Reduce scatter init MPI _File iread shared MPI Intercomm_create MPIL_Type commit MPI Comm create MPI_Gather MPI Recv init
MPIX Scan init MPL File iwrite MPL Intercomm merge MPI Type contiguous MPI_Comm_create errhandler MPL Gatherv MPI Reduce
MPIX{_Scatter ini MPL File iwrite all MPL Iprobe MPI Type create darray MPI Comm create group MPI Get MPI_Reduce local
MPLX_Scatterv MPL File iwrite at MPI Irecv MPI Type create fOO comp MPI Comm create keywal MPT_Get accumulate MeI Reduce scatter
MPI Abort MPL File iwrite at all MPI Ireduce MPI Type create fO0 intege MPI Comm delete atir MPI Get address MPI Reduce scatter block
MPI_Accumulate MPL File iwrite shared MPI Ireduce scatter MPI Type create fo0 real MPI Comm_disconnect MPL Get count MPI Register datarep
MPI _Add error class MPIL File open MPI Ireduce scatter block MPI Type create hindexed MPI Comm dup MPL Get elements MPI Request c2f
MPI_Add error code MPI File preallocate MPI Irsend MPI Type create hindexed MPI Comm dup with info MPI Get elements x MPI_Request foc
MPI Add error string MPL File read MPI Is thread main MPI Type create hvector MPI Comm f2¢ MPI Get library version MPI Request free
MPI_Address MPL File read all MPI Iscan MPI Type create indexed b~ MPL Comm free MPL Get processor name MPI_Request get status
MPI Aint add MPL File read all begin MPL Iscatter MPI Type create keyval MPI_Comm free keyval MPL Get version MPI Rget
MPI_Aint diff MPL File read all end MPL Iscatterv MPI Type create resized MPI Comm get attr MPI_Graph create MPI_Rget accumulate
MPI_Allgather read at MPI Isend MPI Type create struct MPI Comm get errhandler MPI Graph get MPI Rput
MPI_Allgathery read at all MPI Issend MPI Type create subarray MPI Comm_get info MPI Graph map MPI Rsend
MPI Alloc_mem MPI File read at all begin MPI Keyval create MPI Type delete attr MPI Comm get name MPIL Graph neighbors MPI_Rsend init
MPI Alireduce read at all end MPI Type dup MPI Comm get parent MPI_Graph neighbors count MPIL Scan
MPI_Alltoall read ordered MPI Lockup name MPI Type extent MPI Comm group MPI_Graphdims get MPI_Scatter
MPI_Alltoallv MPI File read ordered begin MPI_Message c2f MPI Type f2c MPI Comm_idup MPI Grequest complete MPI_Scatterv
MPI_Alltoallw read ordered end MPI Message f2c MPI Type free MPI_Comm_join MPI Grequest start MPI_Send
MPL Attr delete read shared MPI Mprobe MPI Type free keyval MPI Comm rank MPI Group caf MPI_Send init
MP1_Attr get MPL File seek MPL Mrecy MPI Type get attr MPI Comm remote greup MPI Group compare MPI_Sendrecv
MPI_Attr put seek shared MPI Neighbor allgather MPI Type get contents MPI Comm remote size MPI Group difference MPI Sendrecv replace
o . - MPI _Comm set attr MPI Group excl MPI_Sizeof
MPI_Comm set errhandler MPI_Group f2c MPI_Ssend
MPI Comm set info MPI Group free MPI Ssend
MPI_Comm_set name MPI Group incl MPI_Start
MPI_Comm _size MPI_Group intersection MPI_Startall
MPI_Comm awn MPI_Group range excl MPI Status c2f
MPI Comm spawn _multiple MPI Group range incl MPI Status f2¢
MPI_Comm_split MPI Group rank MPI Status set cancelled
MPI_Comm_split type MPI Group size MPI_Status set elements
namr bomk e samr femmalar L namr cees . N

... and there’s more...much more.

Ron Fox Tcl 2019,

Houston, TX, Slide 26

Approaches for encapsulating MPI
Subset wrapping

= Straight encapsulation of the MPI function interface.
« Approach taken by Axel Kohlmeyer for the mpi package
e See e.g. https://core.tcl-lang.org/jenglish/gutter/packages/mpi.html

L e e e e]

3.1 Data types
5.2 Communicators
6 TclMPI Command Reference
6.1 tclmpi: :init
6.2 tclmpi: :finalize

DR L S I S - Sitill captures the flavor of the MPI API
6.4 tclmpi: :comm_size <commz . L.
6.5 tcdmpi: :comm_rank <commz b St|” eXposeS eXpI|C|t|y the MPI API

6.6 tclmpi: :comm_split <comm> <color: <key=
6.7 tclmpi: :comm_free <commz= Su_bset]
6.8 tclmpi: :barrier <comm> » Still exposes the complexity.
6.9 tclmpi::bcast <data> <type> <root> <comm:

6.10 tclmpi: :scatter <data> <type> <root> <commz

6.11 tclmpi::allgather <data= <type> <comm:>

6.12 tclmpi::gather <data> <type> <root> <comm:>

6.13 tclmpi::allreduce <data= <type> <op> <comm:z

6.14 tclmpi: :reduce <data> <type> <op> <root:> <comm:

6.15 tclmpi::send <data> <type> <dest> <tag> <comm:=

6.16 tclmpi::isend <data> <type> <dest> <tag> <comm:=

6.17 tclmpi::recv <type> <source> <tagz <commz ?statu:

6.18 tclmpi::irecy <types <source: <tag> <comm:

6.19 tclmpi::probe <source> <tag> <comm> ?status?

6.20 tclmpi::iprobe <source= <tag> <comm> ?status?

6.21 tclmpi: :wait <reguests ?status?

b e L LT

Ron Fox Tcl 2019, Houston, TX, Slide 27

https://core.tcl-lang.org/jenglish/gutter/packages/mpi.html

What do Tcl MPI applications want to do:

» Send scripts executed in other ranks.
» Special case of send to all or all others.

» Send data that can be handled by other ranks via callbacks.
« Again special case of send to all or to others.

* Tcl — We know in advance: Everything has a string representation.

* Binary data — may be sent around by the C/C++ part of the application
for C/C++ parts of the application to work on needs a way for that code
to shove the TcIMPI event handling stuff aside and take over.

. Ron Fox Tcl 2019, Houston, TX, Slide 28

mpitcl - MPI aware tcl shell.

* Provides MPI aware tclsh.
« Must be run from mpirun.

= All ranks run this.

» Rank O is special — the ‘master’ interpreter it takes input from stdin
(normally a file for cluster batch jobs).

» Provides all processes with the mpi namespace in which the mpi
command ensemble lives.

* Rank O runs a thread to hoist MPI messages received to the event loop
(vwait).

» Ranks other than zero run a main loop that accepts MPIl messages
and act on them under the assumption they come from mpitcl.

= MPI Tags are used to transparently dispatch messages to appropriate
handlers.

. Ron Fox Tcl 2019, Houston, TX, Slide 29

mpl.:mpl command ensemble subcommands:

size - How many processes are in the application.

rank — What is my rank in MPI_COMM_WORLD

execute where script — Executes a script in the rank(s) defined by where where is
a rank number “all” or “others”

send where data - sends the data to where

handle script - specifies script to handle data received. The script
receives two parameters: sender rank and the data.

stopnaotifier - only legal in rank O — stops the event notifier thread.

startnotifier - only legal in rank O — starts the naotifier thread again.

Ron Fox Tcl 2019, Houston, TX, Slide 30

Sample mpitcl scripts:

proc receiver {rank data} {
puts "Received from $rank '$Sdata™
incr ::slaves -1

}

set slaves [mpi::mpi size]
incr slaves -1; # number of slave processes.

mpi::mpi stop notifier mpi::mpi handle receiver

mpi::mpl send all exit mpi::mpi execute others {

mpi::mpi send 0 "Rank [mpi::mpi rank] is alive"

Mimimal MPI }
script
while {$slaves} {
vwalit slaves
}

mpi::mpi stopnotifier
mpi::mpi execute all exit

Soliciting/getting data from
workers

Ron Fox Tcl 2019, Houston, TX, Slide 31

Applying tclmpi — The Circle is complete.

* NSCLSpectcl

= Structure

= Parallelization of the interactive version (threaded).

» Creating a batch NSCLSpecTcl and using it with tcimpi.

Ron Fox Tcl 2019, Houston, TX, Slide 32

NSCLSpecTcl is highly interactive

= ' =

File Edit Data Source Filters Spectra Gate Help J File Window Spectra Options Graph_objects Help
Load spectra | Save spactra ‘ Spectra} Parameters] Variables] Gates} Fn\ders} o o
Clear spectra ‘ Spectrum Type Data Type Definition file:
* 10 ~ Bitmask ~ Word (16 bits) v itz e
Mi_: Load configuration Load Save
~ ~
o e G 2D GammalD # Long (32 bits) [~ Cumuiative W Fallsafe Sor sosol
Attach online * SUmER) & (i) *
< Stripchart
L Attach to file
LU | Spectrumhame Create/Replace Clear Delete Gate Appl
Attach list of files G G ‘ | ! | HA . % -) |
e ol ‘ LAY LA Duplicate Ungate -2.00 __ 511,50 Q70 S11.50 -1700 1T,
[1] 232 Mgﬂfﬂrlf;gﬁﬁ,ggﬁ te1 namone s FRGHITRRE: @ 565 £33 peaot : AN AEL e @ ese.7
Parameter Low High Bins Units (=1 | Low High Bins Units
Detach ‘
Run title; === Unknown <<= ‘ | | ‘
Data Source:Test Test (Inactive) Name EType |[X Parameter |Low [High |[Bins |Y Parameter |Low |High |[Bins |Gate |
Run number: 0 2 21 event.raw.00] 1023 512 event.raw, 01 Q 1023 512
Analyzed buffers: 2116 raw.00 11 event.raw.00 0 1023 1024 cut
raw.01 11 event.raw.0l 0 1023 1024
raw.02 1l event.raw.02 0 1023 1024
raw.03 1l event.raw.03 0 1023 1024
raw.04 1l event.raw.04] 1023 1024
raw.05 1l event.raw.05 0 1023 1024 ! 155 511‘ S 1Y% 511'
raw.06 1l event.raw.06 0 1023 1024 semes | oo pee s WHETREARS @ s [53 penes BRAIE A a s
raw.07 1l event.raw.07 0 1023 1024 Gomot f %100 e Count o
raw, 08 11 event.raw.08 0 1023 1024 peCETn : : o
raw.09 1l event.raw.09] 1023 1024
Geonetry Zoan Update ALL Expand Marker Cut
Display Upclate Selected| |UnExpand||| Summirg Region
Display + Info| +| - Log Map: Integrate
Ll
File Conscle Edit Interp Prefs History Help =
loading history file ... 48 events added |
Update Spectrum L|5t| Spectrum Mask: * Clear buffer line limit: 512 max line length: unlimited

Main console display active (Tcl8.6.2 / Tk8.6.2)

Done.

Starting treeparamgui... Done

Version: SpecTel-5.2-001 build on charlis Wed Aug 14 16:47:37 EDT 2019 by fox
% start

Display memory: 1/100 MB Title >>> Unknown <=< Run Number: 0
Data Source: Test Data Source (Inactive) 2116 Buffers Analyzed 100.00% efficient

0
”m
coooadME

{} slave 9.11

Ron Fox Tcl 2019, Houston, TX, Slide 33

Simplified NSCLSpecTcl structure and
parallelization approaches.

Data Source

(File or pipe)

Blocks of data
Configures

And controls High level
Buffer
Decoding
Extended Raw events
Tcl/Tk

User Event
Interpreter

Processing
pipeline

An a|ysi S Raw and synthetic parameters

config.
- Gating and

Histogramming

Ron Fox Tcl 2019, Houston, TX, Slide 34

Threaded Parallelism (Giordano Cerizza)

Configures
And starts

Creates

Data S0 s
2 Or PIpe
Blocks of data
. ~ ~ . - -
Buffe Surre
Decoding pDecoding
Raw events
DrOCE N OCCE 0
nIpeline PDIPEITNE
Dec synthetic parameters
c 0 anad
0qra 0

User code must be thread-safe

Ron Fox Tcl 2019, Houston, TX, Slide 35

Threaded Spectcl performance

3000 * Roll off is at the
gzsoo performance limit of the
% 2000 SSD that contained the
@ data.
é'f o « Analysis pipeline for this
E 1000 case is simple compared
500 with E17011’s.
0 « Good scaling up until SSD
’ l° - > 0 % transfer limits.

Number of Processors

Ron Fox Tcl 2019, Houston, TX, Slide 36

MPI parallelism?

= \We can recruit more cores if the application scales.

* \We don’t have to worry about thread safety since it's process
parallelism.

= With an assist from container technology (e.g. singularity) we can get

outside the NSCL to supercomputer centers (or ICER e.g.) with even
more cores.

» BUT In almost all cases cluster computing doesn’t allow dynamic
Interactivity.

* Needed to turn NSCLSpecTcl into a batch program.

* Needed to figure out how to easily parallelize it.
* This is the original target of mpitcl.

. Ron Fox Tcl 2019, Houston, TX, Slide 37

MPI NSCLSpecTcl

» Each process is a complete batch NSCLSpecTcl

» Batch NSCLSpecTcl is three packages
» spectcl — the base application code.
» mpispectcl MPI data sources and sinks.
» A user supplied package implementing the processing pipeline.

« Batch/MPI NSCLSpecTcl has generalized data sources and sinks. analyze command sends
blocks of events from source to sink. I've implemented:
» Source —file.
» Source — MPI (for workers — requests block of data from rank 0).
» Sink -- Analysis
» Sink — MPI (Distributes blocks of data to workers using MPI source).

» Rank O :
* Tells each process (including itself) to read in the configuration scripts.
* Tells other process to use an MPI Source and Analysis sink
* Tells itself to use a file data source and MPI sink.
 Tells everyone to start analyzing data.

= When analysis is complete Rank 0
* Tells all other processes to send it spectrum data.
» Sums the spectra into total spectra
» Writes them out for visualization.

Ron Fox Tcl 2019, Houston, TX, Slide 38

What this looks like:

mpi::mpi execute all {
package require spectcl
package require mpispectcl
package require MyPipeline;
source defs.tcl

mpi::mpi execute others {
mpisource
analysissink

filesource run-0003-00.evt
mpisink
mpl::mpl stopnotifier

mpl::mpl execute others analyze
analyze

mpl::mpl startnotifier

User event processing code is here.

Ron Fox Tcl 2019, Houston, TX, Slide 39

Getting the data back:

set 1 [spectrum -list]
set £ [open spectra.dat w]

foreach spectrum $1 {
set name [lindex $spectrum 1]

getSpectrumFromWorkers Sname
swrite —-format ascii Sf Sname; # Writes a histo to file.

close Sf

Ron Fox Tcl 2019, Houston, TX, Slide 40

Summing a spectrum from worker nodes.

proc addData {name src data} {; # sums the histo from 1 worker into the local histo.
foreach datum $data {

set value [lindex Sdatum end]
set coords [lrange S$datum 0 end-1]
set current [channel -get $name $coords]

incr current S$Svalue
channel -set S$name S$coords $Scurrent

}

incr ::expected -1

proc getSpectrumFromWorkers name {
mpi::mpi handle [list addData $name]

set ::expected [mpi::mpi size]

incr ::expected -1;

set script "mpi::mpi send 0; # Care must be taken to ensure substitutions are done
append script "\[" ; # in the right process.

append script "scontents Sname]"
mpi::mpi execute others $script
while {$::expected > 0} {

vwait ::expected;

Ron Fox Tcl 2019, Houston, TX, Slide 41

Does this work?

10Ghyte file with 2,754,450 events.

Workers Time MB/sec Events/sec
25.4 403.1496 108442.91
13.5 758.5185 204033.33
6.6 1551.515 417340.91
3.9 2625.641 706269.23

oo r~DNPF

+ 2.6Gbytes/sec is interconnect saturation (dual 10GBit/sec ethernet)
* Event processing in the actual experiment
will be more complex but we can scale to more workers.

Events/sec

800000
700000
600000
500000
400000

Events/sec

300000
200000
100000

0

workers

Ron Fox Tcl 2019, Houston, TX, Slide 42

Conclusions

» NSCL’s Transition to modern, digital nuclear electronics poses problems for
online and near-line data analysis.

= Experiments will increasingly require parallelism in online and near-line data
handling:
» Software tools to make it easy for naive users to make use of parallelism by plugging
in their event analysis code.
 Large core count systems for interactive, online analysis (threaded parallel).

* Clusters dedicated to the running experiment for near-line analysis (distributed
parallel).

* High speed interconnects to support the data flow bandwidth.
 Large, multi-petabyte storage that’s fast with fast interconnects.

= E17011 provides a laboratory to explore the techniques we’ll need to apply to
modern experiments.

= mpitcl is one technique to simplify parallel programming for “the masses”
 Easly retrofitted a highly interactive, complex serial analysis program (2 days work)
» Got scaling up to the interconnect bandwidth.

Ron Fox Tcl 2019, Houston, TX, Slide 43

